Isoperimetric inequalities in simplicial complexes
نویسندگان
چکیده
منابع مشابه
Isoperimetric inequalities in simplicial complexes
In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In...
متن کاملIsoperimetric Inequalities for Ramanujan Complexes and Topological Expanders
Expander graphs have been intensively studied in the last four decades. In recent years a high dimensional theory of expanders has emerged, and several variants have been studied. Among them stand out coboundary expansion and topological expansion. It is known that for every d there are unbounded degree simplicial complexes of dimension d with these properties. However, a major open problem, fo...
متن کاملIsoperimetric Inequalities in Crystallography
The study of the isoperimetric problem in the presence of crystallographic symmetries is an interesting unsolved question in classical differential geometry: Given a space group G, we want to describe, among surfaces dividing Euclidean 3-space into two G-invariant regions with prescribed volume fractions, those which have the least area per unit cell of the group. We know that this periodic iso...
متن کاملIsodiametric and Isoperimetric Inequalities for Complexes and Groups
It is shown that D. Cohen’s inequality bounding the isoperimetric function of a group by the double exponential of its isodiametric function is valid in the more general context of locally finite simply connected complexes. It is shown that in this context this bound is ‘best possible ’. Also studied are seconddimensional isoperimetric functions for groups and complexes. It is shown that the se...
متن کاملLp AFFINE ISOPERIMETRIC INEQUALITIES
Affine isoperimetric inequalities compare functionals, associated with convex (or more general) bodies, whose ratios are invariant under GL(n)-transformations of the bodies. These isoperimetric inequalities are more powerful than their better-known relatives of a Euclidean flavor. To be a bit more specific, this article deals with inequalities for centroid and projection bodies. Centroid bodies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combinatorica
سال: 2015
ISSN: 0209-9683,1439-6912
DOI: 10.1007/s00493-014-3002-x